Hyperprolactinemia induced by hCG leads to metabolic disturbances in female mice

Abbreviated title: hCG hypersecretion and metabolism

Laura D. Ratner¹, Guillermína Stevens¹,⁵, Maria Marta Bonaventura¹, Victoria A. Lux-Lantos¹, Matti Poutanen²,³, Ricardo S. Calandra¹, Ilpo T. Huhtaniemi²,⁴, Susana B. Rulli¹.

¹ Instituto de Biología y Medicina Experimental- Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
² Department of Physiology, Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
³ Turku Center for Disease Modeling, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
⁴ Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK.
⁵ Hospital General de Agudos J. M. Ramos Mejía, Urquiza 609, Buenos Aires, Argentina.

Address all correspondence and reprint request to:
Dr. Susana B. Rulli,
Instituto de Biología y Medicina Experimental,
Vuelta de Obligado 2490 C1428ADN, Buenos Aires, Argentina.
TEL: +54 11 47832869, ext. 212. FAX: +54 11 47862564.
E-mail: srulli@ibyme.conicet.gov.ar; rulli.susana@gmail.com

Word count: 4994
2. Abstract

The metabolic syndrome is a growing epidemic; it increases the risk for diabetes, cardiovascular disease, fatty liver and several cancers. Several reports have indicated a link between hormonal imbalances and insulin resistance or obesity. Transgenic (TG) female mice overexpressing the human chorionic gonadotropin β-subunit (hCGβ+ mice) exhibit constitutively elevated levels of hCG, increased production of testosterone, progesterone and prolactin, and obesity. The objective of this study was to investigate the influence of hCG hypersecretion on possible alterations in the glucose and lipid metabolism of adult TG females. We evaluated fasting serum insulin, glucose and triglyceride levels in adult hCGβ+ females and conducted intraperitoneal glucose and insulin tolerance tests at different ages. TG female mice showed hyperinsulinemia, hypertriglyceridemia and dyslipidemia, as well as glucose intolerance and insulin resistance at 6 months of age. A one-week treatment with the dopamine agonist cabergoline applied on 5-week-old hCGβ+ mice, which corrected hyperprolactinemia, hyperandrogenism, and hyperprogesteronemia, effectively prevented the metabolic alterations. These data indicate a key role of the hyperprolactinemia-induced gonadal dysfunction in the metabolic disturbances of hCGβ+ female mice. The findings prompt further studies on the involvement of gonadotropins and prolactin on metabolic disorders and might pave the way for the development of new therapeutic strategies.

Key words: human chorionic gonadotropin, insulin resistance, transgenic mice, prolactin
3. Introduction

Metabolic syndrome is a growing epidemic worldwide that involves 1 out of 4 adult people, and its prevalence increases with age (Grundy, 2008). The consensus statement provided by the International Diabetes Federation (IDF) defines the metabolic syndrome as a condition with abdominal obesity plus any two of the following: elevated plasma triglyceride levels, reduced high-density lipoproteins (HDL), increased blood pressure, or increased fasting plasma glucose (Alberti et al., 2006). Obesity-associated insulin resistance is considered a cause-and-effect relationship since weight changes correlate with changes in insulin sensitivity (Kahn et al., 2006, Qatanani and Lazar, 2007). In this respect, hyperlipidemia is linked to insulin resistance, since insulin promotes fat cell differentiation, enhances adipocyte glucose uptake, and inhibits adipocyte lipolysis.

Although the role of prolactin in reproduction is well known, the participation of this hormone in weight gain and glucose homeostasis is still under debate. Patients with prolactinomas were reported to acquire weight gain and metabolic alterations (Greenman et al., 1998; Ben-Jonathan et al., 2008). However, it is still unclear whether these conditions are directly associated to hyperprolactinemia (Ciresi et al., 2013). Recent experimental evidence suggests that prolactin has a crucial role on the pancreas and the adipose tissue, most notably during development. Prolactin receptor deficient mice (Prlr-/−) provided direct evidence that prolactin signaling is involved in adipogenesis by affecting energy balance and metabolic adaptation (Carre and Binart, 2014). Furthermore, prolactin is shown to be essential for the pancreatic β-cell development during the perinatal period (Auffret et al., 2013), and is therefore, involved in the manifestation of insulin resistance by stimulating insulin release and regulating adipokine release (Ben-Jonathan et al., 2008;
Carre and Binart, 2014). Prolactin was found to decrease glucose transporter 4 (GLUT 4) mRNA expression that may cause a decreased glucose uptake in peripheral tissues (Nilsson et al., 2009). Moreover, prolactin induces pyruvate dehydrogenase kinase 4 (PDK4), whose activation is known to lead to decreased glucose oxidation (White et al., 2007). In addition, this hormone participates in perinatal brown adipocyte differentiation and function (Viengchareum et al., 2008), and also affects energy homeostasis through modulation of lipid metabolism (Carre and Binart, 2014).

We have previously shown the implications of chronically elevated levels of hCG in the phenotype of transgenic (TG) mice. Particularly, female mice overexpressing the hCGβ- subunit (hCGβ+) exhibit precocious puberty, elevated serum levels of hCG, prolactin, testosterone and progesterone, and present with infertility (Rulli et al., 2002; Ratner et al., 2012). Besides, hCGβ+ ovaries show hemorrhagic cysts and massive luteinization as a result of the active stimulation with hCG (Rulli et al., 2002; Ratner et al., 2012). Among the extragonadal phenotypes, these females develop obesity, pituitary macroprolactinomas, mammary gland tumors and elevated bone density at older ages (Rulli et al., 2002; Yarram et al., 2003; Kuorelahti et al., 2007; Ahtiainen et al., 2010; Ratner et al., 2012). In contrast to transgenic females, hCGβ+ males are fertile and exhibit normal levels of testosterone and prolactin (Rulli et al., 2003).

Even though LH/hCG receptors are detected in different non-gonadal tissues, including the pancreas (Abdallah et al., 2004; Cole, 2010), their physiological significance remains unclear. Our previous studies demonstrate that hyperprolactinemia is the main cause for the reproductive defects of adult hCGβ+ females, which can be prevented by a short-term treatment with the dopamine agonist cabergoline at the beginning of the reproductive age (Ratner et al., 2012). Conversely, the same treatment applied at 3 months
of age failed to recover fertility. These findings demonstrate that the cabergoline treatment applied at a critical moment of the phenotype progression prevents hCG-induced abnormalities in these transgenic mice.

The aim of this study was to investigate the possible alterations of glucose and lipid metabolism in adult hCGβ+ females. The short-term treatment with cabergoline was followed in order to assess whether hyperprolactinemia influenced metabolism in the hypersecreting hCGβ females. Since hCGβ+ males do not exhibit changes in prolactin levels, this study was focused on females. Glucose and insulin tolerance tests were conducted at different ages, as well as determination of serum insulin concentration and pancreatic gene expression analysis. Since obesity was described as part of the extra-gonadal phenotype, serum triglycerides, cholesterol and high density lipoprotein cholesterol (HDL-C) were also measured in TG females.

4. Materials and Methods

Animals

All the experiments were performed in TG female mice overexpressing the hCGβ-subunit under the control of the human ubiquitin C promoter (hCGβ+). Generation, housing and genotyping of hCGβ+ with FVB/N genetic background have been previously described (Rulli et al., 2002). Wild-type (WT) littermates were used as controls. Mice were maintained under controlled conditions (12-h light/dark cycle, 21 C), and were given free access to laboratory chow and tap water. Food intake was monitored daily on females caged individually during one week. All experimental procedures were performed according to the NIH Guidelines for Care and Use of Experimental Animals, and approved
by the Institutional Animal Care and Use Committee of the Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET).

Cabergoline treatment

WT and hCGβ+ female mice of 5 weeks of age were injected ip with 500 µg/kg of cabergoline (Laboratorios Beta S.A., Buenos Aires, Argentina) suspended in 0.25% (w/v) methylcellulose as vehicle (Tanaka and Ogawa, 2005). The females received three injections of cabergoline, one every other day, during 1 week (hCGβ+cab) (Ratner et al., 2012). The females used as controls were injected with vehicle only.

Glucose homeostasis tests

Two, three and 6-month-old female mice were fasted for 6 or 3 hr and blood was collected from the tail vein, to perform glucose tolerance test (IGTT) or insulin tolerance test (ITT) respectively. Glucose (2 g/kg, dissolved in water) or insulin (0.75 IU/kg Humulin R, Eli Lilly Interamericana, Argentina) was administered by i.p. injection. Blood glucose was determined at time points 0, 30, 60 and 90 min according to manufacturer’s recommendations by using a glucometer Accu-Chek (Roche) (Andrikopoulos et al., 2008). The ITT was performed on the same group of animals one week after IGTT. In addition, glucose-stimulated insulin secretion was determined from serum samples of 6-hour-fasted females of 3 and 6 months of age, at 0 and 30 min after glucose administration. Serum samples were obtained by centrifugation and stored at -20 C. Insulin levels were assessed by rat/mouse insulin Elisa kit (EZRMI-13K; Millipore).
Sample collection

Mice were weighed and euthanized by CO$_2$ asphyxiation at 6 months of age after 18 hr fasting, and cardiac blood was obtained immediately thereafter. Serum samples were separated by centrifugation and stored at -20 C for biochemical analyses. Pancreata were perfused with RNAlater (Ambion) immediately after dissection, and then snap frozen and stored at -70 C for RNA isolation.

Biochemical analyses

Serum cholesterol, triglycerides and high density lipoprotein cholesterol (HDL-C) concentrations were measured by colorimetric assays (BioSystems, Spain) according to the manufacturer’s instructions. Serum lipid indices were calculated according to the following formulas: Cholesterol / HDL-C (Castelli, 1996); Triglycerides / HDL-C (McLaughlin et al., 2003). The calculation of HOMA-IR (Homeostasis Model Assessment Insulin Resistance) was performed according to the formula of Matthews et al. (1985): (Glucose mmol / dl x Insulin mUI / ml) / 22.5. The Quicki (Quantitative Insulin Sensitivity Check Index) was calculated consistent with Katz et al. (2000): 1 / (Log Insulin mUI / ml + Log Glucose mg / dl).

hCG bioassay

The bioactive levels of circulating hCG were determined by the mouse testicular interstitial cell in vitro bioassay as previously described (Ding and Huhtaniemi, 1989; Rulli et al, 2002). Briefly, decapsulated testes from adult WT males were dispersed with collagenase type I (0.15 mg/ml) in M199 medium (Sigma-Adrich) for 5 min at 34 C. The supernatant was filtered through nylon mesh (mesh size 100 µm) and the cell suspension
was washed twice with M199 medium supplemented with 0.1% (w/v) bovine serum albumin (BSA; Sigma-Aldrich) and 20mM HEPES (Sigma-Aldrich). Testicular interstitial cells obtained using this technique are predominantly Leydig cells, as described previously (Ding and Huhtaniemi, 1989). Cells (50 000 cells/tube) were incubated with increasing concentrations of recombinant hCG as standard (AFP8456A, 20000 IU/mg; NHPP, NIDDK), or with the serum samples, in a 95%O₂/5%CO₂ atmosphere at 34°C for 4 h. After incubation, supernatants were recovered by centrifugation and frozen at -20°C. The testosterone concentration in the supernatants was measured by radioimmunoassay, according to a method described previously (Ratner et al., 2012). The intra- and inter-assay coefficients of variation were less than 12%.

In vivo peripheral tissue response to insulin

Six-month-old WT and hCGβ+ female mice were fasted for 4 h. Then, animals were anesthetized with 2% avertin (12 ml/kg i.p.). The abdominal cavity was opened and 2 IU/kg of insulin was injected into the portal vein. At time points 0 and 5 min post-injection, portions of skeletal muscle were excised and flash frozen in liquid N₂ and stored at −70°C until used.

Western blot analysis

Skeletal muscle homogenates were prepared with lysis buffer (50 mM TRIS, 150 mM NaCl, 1mM EDTA, 0.1%SDS, 0.5% sodium deoxycholate, 1% NP40-IGEPAL), 200 mM sodium orthovanadate (NO₃VO₄), 200mM NaF and protease inhibitor cocktail (Roche). Concentration was determined by the method of Lowry (1951), using BSA as standard protein. Fifteen µg of protein from each sample was resolved by 10% SDS-PAGE
under reducing conditions and transferred to nitrocellulose membranes (Amersham Hybond-ECL, GE Healthcare Life Sciences, Pittsburgh, PA, USA). To reduce non-specific antibody binding, membranes were incubated for 1 h at room temperature in T-TBS blocking buffer. The membranes were then incubated overnight at 4 C with antibodies anti-AKT and anti-pAKT in T-TBS, 1% BSA (Cell Signalling, MA; AKT, #9272S:1/500; pAKT, #4060S: 1/2000). Secondary goat anti-rabbit antibody conjugated with peroxidase HRP (Santa Cruz Biotechnology inc, CA, # sc-2004: 1/5000) were used. For actin detection, membranes were incubated overnight at 4 C with first antibody diluted in PBS-T, 1% BSA (Calbiochem CA, # cp01: 1:5000) followed by incubation with secondary goat anti-mouse IgM antibody conjugated with peroxidase HPR (Santa Cruz Biotechnology Inc, CA, # sc-2064:1/2000). Immunoreactive proteins were revealed by enhanced chemiluminescence (ECL-Plus, Amersham, GE Healthcare LifeSciences) using hyperfilm ECL (GE Healthcare LifeSciences) and band intensities were quantified using Scion Analyzer software.

Immunohistochemistry

Pancreata from 6-month-old WT, hCGβ+ and hCGβ+cab female mice were fixed in 4% paraformaldehyde, dehydrated and embedded in paraffin wax. Endogenous peroxidase reactivity was quenched by a 20-min pretreatment with 10% methanol, 0.3% H₂O₂ in 0.01M PBS (pH 7.4). For antigenic retrieval, sections were pretreated with citrate buffer (0.01M, pH 6), and permeabilized by a 5-min incubation with 0.5% saponin in PBS and 5-min incubation with proteinase K (10 ng/ml). Non-specific proteins were blocked by subsequent incubation with protein blocking buffer (5% goat normal serum in PBS for Pdx1, and 5% horse normal serum in PBS for Nkx 6.1) for 30 min. After several washes...
steps, sections were incubated with antibodies rabbit anti-Pdx1 (Millipore, CA, # 06-1379: 1/1000) and mouse anti-Nkx 6.1 (DSHB, # F55A10-S: 1/250) diluted in incubation buffer (2% goat normal serum in PBS for Pdx1; 2% horse normal serum in PBS for Nkx 6.1) overnight in a humidified chamber at 4 C. On the second day, pancreata sections were washed and incubated with biotinylated secondary antiserum (goat anti-rabbit IgG; horse anti-mouse IgG, 1:500, Vector Lab., CA, USA) for 2h at room temperature. Finally, immunoreaction was visualized with 0.01% H$_2$O$_2$ and 0.05% 3,3-diaminobenzidine solution (in 0.05 M Tris–HCl, pH 7.6) and an avidin–biotin–peroxidase system (Vector Lab). Negative controls were performed in the absence of the primary antibodies.

RNA isolation and analysis of gene expression

Total RNA was isolated from pancreata as previously described (Gonzalez et al., 2011), using TRIZOL reagent (Invitrogen) according to the manufacturer’s protocol. Two micrograms of RNA were treated with DNase I (Invitrogen) and reverse-transcribed in a 20 µl reaction volume using M-MLV reverse transcriptase (Promega) and random hexameres (Biodynamics). For quantitative real-time PCR (qPCR) primer sets were designed for the specific amplification of Ins1, Ins2, Gcg (Ins1 Fw: AAGCTGGTGCCCATCCAGTAACC, Ins1 Rev: GTTTGGGTCCCAGAGGGGAAG; Ins2 Fw: CCCTGCTGGCCCTGCTCTT, Ins2 Rev: AGGTCTGAAGGTCACCTGCT; Gcg Fw: CTACACCTGTTCGCAGCTCA, Gcg Rev: CTGGGGTTCTCCTCTGTGTC), and cyclophilin A (Ppia) as an internal control (Ppia Fw: GCGTCTCCTTCTGAGCTGTT, Ppia Rev: AAGTCACCACCTGGGCAC). Each sample was assayed in duplicate using 4 pmol of each primer, SYBR Green Master Mix (Applied Biosystems) and 2-20ng of cDNA in a total volume of 15 µl. Amplification was carried out in a CFX96 Touch™ Real-Time PCR...
Detection System (Bio-Rad). For the assessment of quantitative differences in the cDNA target between samples the mathematical model of Pfaffl (2001) was applied. An expression ratio was determined for each sample by calculating $\left(\frac{E^{\Delta Ct \text{(target)}}}{E^{\Delta Ct \text{(Ppia)}}}\right)$, where E is the efficiency of the primer set and $\Delta Ct = Ct \text{(reference cDNA)} - Ct \text{(experimental cDNA)}$. The amplification efficiency of each primer set was calculated from the slope of a standard amplification curve of log (nanograms of cDNA) per reaction vs. Ct value ($E = 10^{(1/\text{slope})}$). Efficiencies of 2±0.1 were considered optimal. Results were expressed relative to a reference sample (WT choosen *ad random*).

Statistical Analysis

Data are expressed as the mean ± SEM. Statistical analysis for comparing two sets of data was performed with Student’s t test for two independent groups. In those experiments where the effects of two factors (genotype and treatment) were studied, the two-way ANOVA was performed. The two-way ANOVA with repeated measures was used for the glucose and insulin tolerance tests. Bonferroni’s post-hoc test was used to establish the level of significance between group pairs. The trapezoidal rule was used to determine the area under the curve (AUC). Data were transformed when required. A p value less than 0.05 was considered significant.

5. Results

Hormonal and metabolic status of hCGβ+ female mice

We have previously demonstrated that at 6 months of age, hCGβ+ female mice showed pronounced disturbances in their gonadal and non gonadal phenotype (Rulli et al., 2002; Ratner et al., 2012). As was confirmed in Table 1, hCGβ+ females exhibited a
significant increase in body weight, abdominal white fat depot and serum levels of bioactive hCG as compared with WT (p<0.01) (Rulli et al., 2002; Ratner et al., 2012). This change, however, was not accompanied by an increase in the daily food intake. At this age, serum levels of insulin and triglycerides were elevated in TG females (p<0.001). On the other hand, serum fasting glucose, cholesterol and HDL-C levels did not show differences between WT and hCGβ+ females (Table 1). In addition, the atherogenic (or Castelli) index, represented by the ratio of cholesterol/HDL-C, did not show significant differences between the groups, whereas the triglycerides/HDL-C ratio showed a statistically significant increase in hCGβ+ females as compared with WT females (p < 0.001). From fasting insulin and glucose data, we calculated the surrogate indexes of insulin sensitivity and resistance HOMA-IR and QUICKI. The values of HOMA-IR were significantly higher in the hCGβ+ group compared with WT (p<0.05; Table 1), as observed for groups of mice with decreased insulin sensitivity. Conversely, the value of QUICKI was significantly lower in the hCGβ+ group compared with WT (p<0.05), also indicative of diminished insulin sensitivity.

Age-dependent changes in the glucose homeostasis of hCGβ+ females

In order to study a possible correlation with age, IGTT and ITT were performed in 2, 3 and 6-month-old WT and hCGβ+ females. No differences were found in IGTT at two months of age (Fig. 1 A). At 3 and 6 months of age, TG females showed glucose intolerance, represented by a delay in glucose clearance and an increase in glucose levels through the different time-points analyzed after glucose administration (Fig. 1 B,C). Accordingly, the total glucose levels accumulated during the 90 min of the assay,
represented as the AUC, were significantly increased in hCGβ+ females as compared with WT (p<0.01). The ITT performed in 2 and 3 month-old TG females showed a quick decline in glucose levels at 30 min after insulin administration, and remained low thereafter, as it was observed in WT females at the same ages (Fig. 2 A,B). However, 6-month-old hCGβ+ females showed elevated glucose levels after insulin administration, which remained high through the different time-points analyzed (Fig. 2 C). Accordingly, the AUC resulted elevated in hCGβ+ females (p<0.01).

The insulin secretion capacity in response to glucose administration was performed in 3- and 6-month-old WT and hCGβ+ females (Fig. 3A). The glucose response was first measured at 30 min, meaning that only the second phase of insulin secretion was detected in this study (Caumo and Luzi, 2004). TG mice from both ages exhibited elevated basal insulin levels as compared with WT females. The insulin secretion of WT females from both ages showed a correct response to glucose stimulation with at least a 2.5-fold increase at 30 min post-glucose administration (p<0.05). Conversely, 3- and 6-month-old hCGβ+ mice exhibited an impaired glucose-stimulated response, being only a 0.8 and 1-fold increase, respectively (Fig. 3A).

Since TG female mice showed profound alterations in glucose metabolism at 6 months of age, we further analyzed the peripheral insulin sensitivity at this age. To this aim, we determined the status of insulin-induced AKT phosphorylation in skeletal muscle obtained from fasted WT and hCGβ+ mice (Fig 3B). As expected, WT females showed a 3-fold increase in insulin-stimulated AKT phosphorylation (p<0.05), whereas TG females exhibited a severely impaired AKT activation, with levels comparable to basal of both
groups (p<0.05). TG females showed an increase in total AKT as compared with WT (p<0.05).

Taken together these results showed that 6-month-old hCGβ+ females exhibited peripheral insulin resistance and impaired glucose tolerance, being the most important disruptions in glucose homeostasis.

Effect of cabergoline on the glucose and lipid homeostasis of hCGβ+ females.

Treatment with the dopaminergic agonist cabergoline was carried out to analyze the influence of hyperprolactinemia on serum insulin, glucose and triglycerides. It was confirmed that a short-term treatment with cabergoline administered at 5 weeks of age to hCGβ+ females (hCGβ+cab) was effective in the normalization of prolactin levels (p<0.001; Fig 4B) and body weight (p<0.05; Fig 4 A) at 6 months of age (Ratner et al., 2012). In addition, cabergoline treatment restored serum triglycerides (p<0.001; Fig. 4 D) and insulin (p<0.05; Fig. 4 C) to normal levels in comparison to hCGβ+ control females. Cabergoline treatment administered to 5-week-old WT females (WTcab), did not produce any effect on the parameters studied (Fig. 4 A-D).

Effect of cabergoline on IGTT and ITT of hCGβ+ females

IGTT and ITT were performed to further analyze the influence of prolactin on the glucose homeostasis of the TG females (Fig. 5). The IGTT showed a similar clearance in WT and WTcab females, with significantly increased glucose levels of hCGβ+ females at 30, 60 (p<0.001) and 90 (p<0.01) min after glucose administration (Fig. 5 A). hCGβ+ females treated with cabergoline showed a significant reduction of the glucose levels at 30
min, as compared with the results obtained for hCGβ+ females. In line with this, the AUC exhibited similar results (Fig. 5 B).

The ITT demonstrated that cabergoline treatment fully prevented the appearance of insulin resistance in TG females (Fig. 5 C). This was confirmed by analyzing the AUC: complete normalization occurred in cabergoline treated TG females with respect to control hCGβ+ females (p<0.05; Fig. 5 D).

Effect of cabergoline on pancreatic Ins1, Ins2, Gcg, Pdx1 and Nkx 6.1 in hCGβ+ females.

Due to the effectiveness of the cabergoline treatment in normalizing the glucose homeostasis of TG females, we assessed gene expression for preproinsulin (Ins1 and Ins2) and glucagon (Gcg) in pancreatic tissue of 6-month-old hCGβ+ and hCGβ+cab females. In agreement with the increased serum levels of insulin, hCGβ+ females exhibited significantly increased gene expression of both Ins1 and Ins2, as compared with WT females (p<0.05, Fig 6A). The cabergoline treatment restored the expression levels of the genes for insulin to the level obtained in WT mice (Fig. 6 A). In contrast, the expression of Gcg did not show significant differences among the groups studied (Fig. 6A). The cabergoline treatment applied to WT females did not affect the expression levels of the genes analyzed.

In addition, we performed immunohistochemistry for two well known markers of β-cell maturity and identity, PDX1 and NKX 6.1. The presence of both markers was detected in the pancreatic islets of WT, hCGβ+ and hCGβ+cab, and the expected nuclear localization was observed (Fig 6B).
6. Discussion

The influence of hormones on glucose and lipid metabolism may be evidenced, among others, in various clinical conditions such as hormone replacement therapy, pregnancy, menopause, and hyperandrogenic states. Several models have been useful for understanding the pathophysiology of the metabolic syndrome (Kennedy et al., 2010; Guo, 2014). We report here a TG mouse model that shows a clear link between alterations of the gonadotropin axis and metabolic dysfunctions.

As previously demonstrated, hCGβ+ females exhibit elevated levels of hCG, progesterone, testosterone and prolactin, precocious puberty associated with a transient increase of serum estradiol, and infertility at adulthood (Rulli et al., 2002; Ratner et al., 2012). Besides, hCGβ+ females show obesity, mainly with abdominal fat accumulation, macroprolactinomas, mammary adenocarcinoma and increased bone mineral density at older ages (Rulli et al., 2002; Yarram et al., 2003; Ahtiainen et al., 2010; Kuorelahti et al., 2010; Bachelot et al., 2013). These extra-gonadal phenotypes of the hCGβ+ females are abolished by gonadectomy, indicating that ovarian hCG hyperstimulation with abnormal gonadal hormone production is directly or indirectly responsible for the extra-gonadal phenotype observed in this model (Rulli et al., 2002). Furthermore, we have shown that a short-term treatment with the dopamine agonist cabergoline to hCGβ+ females abolishes hyperprolactinemia, normalizes steroid hormone levels, and prevents the development of mammary tumors and pituitary adenomas in adulthood, thus, demonstrating the pivotal role of prolactin on certain phenotypic alterations of hCGβ+ females (Ratner et al., 2012). In the present study, we showed that the endocrinological alterations induced by chronic hCG overproduction lead to significant metabolic dysfunctions associated with hyperinsulinemia, glucose intolerance and impaired glucose- stimulated insulin secretion.
that precedes/accompanies the development of insulin resistance. The failure of β-cell
function in this model is evident, since despite hyperinsulinemia, basal glucose ranged
within the normal values, but not after an i.p. glucose load. Besides, hypertriglyceridemia
and high triglyceride/HDL-C index were found in adult female mice.

It is well known that AKT activation is involved in insulin sensitivity in peripheral
organs. Specifically, in the skeletal muscle insulin activates, via IRS-1, the signalling
pathways that involve phosphatidylinositol (PI) 3-kinase and its downstream effector AKT,
which mediates glucose uptake by leading to membrane translocation of GLUT 4 (Bjornholm et al., 1997). Given the evidence of insulin resistance and hyperinsulinemia
with normoglycemia in TG females, we analyzed the activation of akt in skeletal muscle. It
seems that two phenomena coexist in this model. Firstly, high basal AKT expression with
the consequent increase in basal AKT phosphorylation, and secondly the impaired AKT
activation after insulin stimulation. A similar situation was found in a mouse model under
high fat diet (Liu et al., 2009). These animals also showed insulin resistance and
hyperinsulinemia with normoglycemia. Moreover, basal AKT phosphorylation was
increased, thus showing an adaptation of the system to the high insulin levels, and allowing
the maintenance of glucose levels within the normal range (Liu et al., 2009). In the same
way, we found an increase in basal AKT phosphorylation that would explain the
normoglycemia observed. These findings, together with the inability to respond to
exogenous insulin stimulation, suggest that the high AKT protein levels would lead to a
saturation of the AKT kinase activity, thus producing a decrease in the rate of insulin-
stimulated phosphorylation and explaining the insulin resistance observed in our model.
Similar results were observed in humans, with altered AKT activation in skeletal muscle
under hyperinsulinemic conditions (Karlsson et al., 2005). In addition, the db/db mice
model, as well as obese diabetic human patients, also exhibit decreased AKT phosphorylation but unaltered basal total AKT in skeletal muscle (Shao et al., 2000; Gosmarov et al., 2004).

The role of prolactin on reproduction has been extensively studied, but implications of this hormone on metabolism, body weight and energy regulations are an open issue. Pregnant and lactating women exhibit hypoadiponectinemia due to prolactin influence on secretion and expression of adiponectin (Asai-Sato et al., 2006). In hamsters, inhibition of prolactin secretion by bromocriptine has led to a reduction in fat depots, without reducing food intake or body weight (Freeman et al., 2000). It has been reported that prolactin is involved in adipose tissue differentiation as well as regulation of energy expenditure (Auffret et al., 2012). The absence of prolactin receptor in Prlr KO mice prevents high-fat diet-induced weight gain, despite increased food intake through an increase in energy expenditure and metabolic rate. In an opposite way, in our model, hyperprolactinemia would be one of the main effectors on the weight gain by inducing accumulation of white abdominal fat depot and decreasing energy expenditure, with no change in food intake.

The lactogenic hormones during pregnancy enhance insulin production in response to the growing metabolic demands on the mother and affect pancreatic islet development in the fetus (Ben-Jonathan et al., 2008). Interestingly, the hyperprolactinemic state due to a selective disruption of the dopamine D2 receptor in the lactotropes of female mice (lacDrd2KO) leads to increased body weight, triglycerides, and glucose intolerance, but the response to insulin was preserved (Perez Millan et al., 2014). The short-term treatment with cabergoline provoked a recovery of glucose tolerance and a complete reversal of the insulin resistance, as well as a significant reduction in insulin and triglyceride levels. In this regard, cabergoline effectively prevented the hyperprolactinemia-associated metabolic
dysfunctions in TG mice. These findings provide strong evidence that elevated prolactin has a key role for the metabolic alterations in hCG overproducing females by acting directly on the target organs, and indirectly via alteration of the steroid hormone production. This could be explained by the persistent stimulus of prolactin together with hCG. This induces a significant increase of ovarian $Lhcgr$ accompanied by a massive ovarian luteinization, which results in elevated levels of progesterone and testosterone (Ratner et al., 2012).

Androgens affect lipid metabolism by increasing the activity of lipoprotein lipase and hepatic lipase, by causing an increase in triglycerides, LDL-C and decrease the levels of HDL-C (LaRosa, 1995). Estrogens, on the contrary, increase HDL-C and decrease LDL-C levels (Gillmer, 1992; Tikkanen, 1996). The influence of androgens on lipid metabolism was also demonstrated in female rats under prenatal androgen treatment, which developed dyslipidemia and hepatic steatosis in adulthood. These changes would be the consequence of increased adipose tissue and insulin resistance induced by prenatal androgenization (Demissie et al., 2008). A similar metabolic alteration has been described in adult rats following early postnatal administration of testosterone (Alexanderson et al., 2007).

Exposure to high levels of gonadal steroids, especially testosterone and progesterone throughout life (Rulli et al., 2002), could be one of the predisposing factors for dyslipidemia in this TG model, which is reinforced by the presence of obesity and insulin resistance.

The characteristic hyperprolactinemia in hCGβ+ females is a possible player in the adaptation of the pancreas to an increased insulin demand. Some lines of evidence serve as support for this purpose, as activation of prolactin receptor in the pancreas may be responsible for the increase in islet β-cells during pregnancy (Ben-Jonathan, 2008; Huang
et al., 2009; Huang, 2013). In vitro exposure of islets to prolactin increases insulin secretion, β-cell proliferation and decreases the threshold of insulin response to glucose (Huang et al., 2009). On the other hand Prlr KO mice showed islet and β-cell hypoplasia, reduced pancreatic insulin mRNA levels, a blunted insulin secretory response to glucose, and mild glucose intolerance (Freemark et al., 2001). During pregnancy of heterozygous Prlr +/- mice, pancreatic islet adaptation to blood glucose and the functioning mass of β-cell is affected (Huang et al., 2009).

Sex hormones collectively have the ability to reduce the sensitivity to insulin. It is known that estrogen and progesterone increase the pancreatic secretion of insulin and induce insulin resistance (Garcia et al., 1983; Gonzalez et al., 2000; Livingstone and Collison, 2002). These behave as counterregulatory hormones of glucose homeostasis during the early stages of pregnancy, and as a result, β-cell hyperplasia and increased pancreatic insulin secretion is observed (Macotela et al., 2009).

Rats and mice have two structurally similar insulin genes, *Ins1* and *Ins2*. Both genes are functional but there is no consensus about their relative expression in rodent β-cells (Roderigo-Milne et al., 2002). Changes in glucose metabolism of hCGβ+ females were accompanied by a significant increase in the expression of both genes. This confirmed that hyperinsulinemia resulted from the overproduction of insulin in pancreatic β-cells of the hCGβ+ females. The identity of insulin-producing pancreatic β cells was confirmed by the visualization of the specific markers PDX1 and NKX 6.1 in hCGβ+ mice. Besides, cabergoline treatment was able to significantly reduce the *Ins1* and *Ins2* mRNA levels, in concordance with the normalization of serum insulin in transgenic females.
In light of Metabolic Syndrome as a growing epidemic, animal models are good tools to determine the pathophysiological basis of this disease and how increases the risk for other diseases. This transgenic model overexpressing hCG gives us the possibility to study the consequences of hormone alterations in metabolic dysfunctions. Hyperprolactinemia associated with an altered gonadal function would explain the altered lipid and glucose metabolism in hCGβ+ female mice, considering that all these changes were manifested after the occurrence of high levels of gonadal steroids and prolactin, which started at early age and persisted high throughout life. On the other hand, the presence and activation of LH/hCG receptors in pancreatic β cells suggests a role for LH/hCG as a potential regulator of insulin release (Parkash et al., 2015). Consequently, the potential direct participation of hCG in the metabolic process deserves future studies.

7. Declaration of interests

There is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

8. Funding

This work was supported by grants from the National Agency of Scientific and Technological Promotion (PICT2006 Nº272 for S.B.R.; PICT2011 Nº414 for R.S.C.); CONICET (PIP 183 for S.B.R.); Roemmers Foundation, Argentina; Fundación René Barón, Argentina.

9. Acknowledgements

Cabergoline was a gift from Laboratorios Beta S.A., Argentina.
10. References

11. Figure legends

Figure 1. Intraperitoneal Glucose Tolerance Test (IGTT) in hCGβ+ female mice at 2, 3 and 6 month of age. IGTT (2 g/kg) in fasted WT and hCGβ+ females was performed at 2 (A), 3 (B) (n=4), and 6 (C) months of age (n=7). Two-way ANOVA with repeated-measures, followed by Bonferroni’s post hoc test was conducted; * p<0.05; ** p<0.01; *** p<0.001. The area under the curve (AUC) was analyzed for each group at different ages; Student’s t-test was conducted; ** p<0.01. Data are presented as mean±SEM.

Figure 2. Intraperitoneal Insulin Tolerance Test (ITT) in hCGβ+ female mice at 2, 3 and 6 month of age. ITT (0.75 IU/kg) in fasted WT and hCGβ+ females was performed at 2 (A), 3 (B) (n=4) and 6 (C) months of age (n=6). Two-way ANOVA with repeated-measures, followed by Bonferroni’s post hoc test was conducted; * p<0.05; *** p<0.001. The area under the curve (AUC) was analyzed for each group at different ages; Student’s t-test was conducted; ** p<0-01. Data are presented as mean±SEM.

Figure 3. (A) Glucose-stimulated insulin release in 3- and 6-month-old hCGβ+ female mice. Glucose (2 g/kg) was administered i.p. to fasted WT and hCGβ+ female mice, and serum insulin levels were measured at 0 and 30 min post-glucose. Two-way ANOVA with repeated-measures, followed by Bonferroni’s post hoc test was conducted. Data are presented as mean±SEM (n=4). *: P<0.05; **: p<0.01. (B) Peripheral tissue response to insulin. A representative western blot was shown for AKT activation in skeletal muscle. Samples were obtained from fasted 6-month-old WT and hCGβ+ female mice at 0 or 5 min after insulin administration. Two-way ANOVA followed by Bonferroni’s post hoc test or
Student’s t-test was conducted according to each case. Different letters indicate a value of at least $p<0.05$. Data are presented as mean±SEM ($n=4$).

Figure 4. Effect of cabergoline on body weight and serum levels of prolactin, insulin, and triglycerides in hCGβ+ females. Body weight (A) and serum prolactin (B), insulin (C) and tryglicerides (D) levels in 6-month-old cabergoline- treated transgenic females (hCGβ+cab) ($n=8$) after 18 hr fasting. WT ($n=12$), cabergoline-treated WT (WTcab) ($n=4$) and hCGβ+ ($n=8$) females were used as controls. ANOVA, followed by Bonferroni’s post hoc test was conducted. Different letters indicate a value of at least $p<0.05$. Data are presented as mean±SEM.

Figure 5. Effect of cabergoline treatment on the glucose homeostasis in WT and hCGβ+ females. IGTT (2 g/kg) (A), and ITT (0.75 IU/kg) (C) in fasted 6-month-old cabergoline-treated transgenic (hCGβ+cab) females was performed ($n=8$); fasted 6-month-old WT ($n=12$), cabergoline-treated WT (WTcab) ($n=4$) and hCGβ+ females ($n=12$) were used as control groups. Two-way ANOVA with repeated-measures, followed by Bonferroni’s post hoc test was conducted. A) WT vs hCGβ+ **: $p<0.01$; ***: $p<0.001$; hCGβ+ vs hCGβ+cab ##: $p<0.01$; C) hCGβ+ vs WT, WTcab, hCGβ+cab; **: $p<0.01$, ***: $p<0.001$. The area under the curve (AUC) was analyzed for the different groups (B, D). ANOVA followed by Bonferroni’s post hoc test was conducted. Different letters indicate a value of at least $p<0.05$. Data are presented as mean±SEM.

Figure 6. (A) Effect of cabergoline on the pancreatic gene expression of Ins1, Ins2, Gcg and Ccnd2. The mRNA expression analysis of Ins1, Ins2 and Gcg from fasted 6-month-old
WT, hCGβ+ and cabergoline-treated WT (WTcab) and hCGβ+ (hCGβ+ cab) pancreata was carried out by qRT-PCR. ANOVA, followed by Bonferroni’s post hoc test, was conducted. Different letters indicate a value of at least p< 0.05. Data are presented as mean ± SEM (n=4). (B) immunolocalization of PDX1 and NKX 6.1 in pancreas. Representative sections from 6-month-old WT, hCGβ+ and hCGβ+ cab female mice were immunostained with PDX1 and NKX 6.1 specific antibodies. Scale bar 100 µm.
Table 1. Metabolic characterization of 6-month-old WT and hCGβ+ female mice

<table>
<thead>
<tr>
<th></th>
<th>WT</th>
<th>hCGβ+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>24.7 ± 0.7 (7)</td>
<td>34.9 ± 2.0*** (7)</td>
</tr>
<tr>
<td>Daily food intake (g/mouse)</td>
<td>4.42±0.20 (7)</td>
<td>4.43±0.27 (7)</td>
</tr>
<tr>
<td>Abdominal white fat (g)</td>
<td>1.79±0.35 (7)</td>
<td>3.72±0.42** (7)</td>
</tr>
<tr>
<td>Bio hCG (IU/L)</td>
<td>1.79 ± 0.15 (4)</td>
<td>23.46 ± 8.66*** (4)</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>152±7 (5)</td>
<td>145±10 (7)</td>
</tr>
<tr>
<td>Insulin (ng/ml)</td>
<td>0.21±0.07 (5)</td>
<td>1.07±0.21*** (7)</td>
</tr>
<tr>
<td>HOMA-IR</td>
<td>1.78±0.65 (5)</td>
<td>8.78±2.12** (7)</td>
</tr>
<tr>
<td>QUICKI</td>
<td>0.37±0.02 (5)</td>
<td>0.29±0.01** (7)</td>
</tr>
<tr>
<td>Triglycerides (mg/dl)</td>
<td>147±14 (5)</td>
<td>634±61 *** (5)</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>130±14 (4)</td>
<td>177±18 (5)</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>82±4 (4)</td>
<td>95±5 (5)</td>
</tr>
<tr>
<td>Cholesterol/HDL ratio</td>
<td>1.59±0.18 (4)</td>
<td>1.86±0.14 (5)</td>
</tr>
<tr>
<td>Triglycerides/HDL ratio</td>
<td>1.78±0.11 (4)</td>
<td>6.79±0.22*** (5)</td>
</tr>
</tbody>
</table>

Data are presented as mean±SEM, the number of animals used in each determination is indicated in brackets. Student’s t-test: * p<0.05; ** p<0.01; *** p<0.001.
Figure 1. Intraperitoneal Glucose Tolerance Test (IGTT) in hCGβ+ female mice at 2, 3 and 6 month of age. IGTT (2 g/kg) in fasted WT and hCGβ+ females was performed at 2 (A), 3 (B) and 6 (C) months of age. Two-way ANOVA with repeated-measures, followed by Bonferroni’s post hoc test was conducted; * p<0.05; ** p<0.01; *** p<0.001. The area under the curve (AUC) was analyzed for each group at different ages; Student’s t-test was conducted; ** p<0.01. Data are presented as mean±SEM (n=4-7).
Figure 2. Intraperitoneal Insulin Tolerance Test (ITT) in hCGβ+ female mice at 2, 3 and 6 month of age. ITT (0.75 IU/kg) in fasted WT and hCGβ+ females was performed at 2 (A), 3 (B) and 6 (C) months of age. Two-way ANOVA with repeated-measures, followed by Bonferroni’s post hoc test was conducted; * p<0.05; *** p<0.001. The area under the curve (AUC) was analyzed for each group at different ages; Student’s t-test was conducted; ** p<0.01. Data are presented as mean±SEM (n=4-7).
Figure 3. (A) Glucose-stimulated insulin release in 3- and 6-month-old hCGβ+ female mice. Glucose (2 g/kg) was administered i.p. to fasted WT and hCGβ+ female mice, and serum insulin levels were measured at 0 and 30 min post-glucose. Two-way ANOVA with repeated-measures, followed by Bonferroni’s post hoc test was conducted. Data are presented as mean±SEM (n=4). *: P<0.05; **: p<0.01. (B) Peripheral tissue response to insulin. A representative western blot was shown for AKT activation in skeletal muscle. Samples were obtained from fasted 6-month-old WT and hCGβ+ female mice at 0 or 5 min after insulin administration. Two-way ANOVA followed by Bonferroni’s post hoc test or Student’s t-test was conducted according to each case. Different letters indicate a value of at least p<0.05. Data are presented as mean±SEM (n=4).
Figure 4. Effect cabergoline on body weight and serum levels of prolactin, insulin, and triglycerides in hCGβ+ females. Body weight (A) and serum prolactin (B), insulin (C) and triglycerides (D) levels in 6-month-old cabergoline-treated transgenic females (hCGβ+ cab) after 18 hr fasting. WT, cabergoline-treated WT (WT cab) and hCGβ+ females were used as controls. ANOVA, followed by Bonferroni’s post hoc test was conducted. Different letters indicate a value of at least $p<0.05$. Data are presented as mean±SEM (n=4-12).
Figure 5. Effect of cabergoline treatment on the glucose homeostasis in WT and hCGβ+ females. IGTT (2 g/kg) (A), and ITT (0.75 IU/kg) (C) in fasted 6-month-old cabergoline- treated transgenic (hCGβ+ cab) females was performed; fasted 6-month-old WT, cabergoline-treated WT (WT cab) and hCGβ+ females were used as control groups. Two-way ANOVA with repeated-measures, followed by Bonferroni’s post hoc test was conducted. A) WT vs hCGβ+ **: p<0.01; ***: p<0.001; hCGβ+ vs hCGβ+ cab ##: p<0.01; C) hCGβ+ vs WT, WT cab, hCGβ+ cab; **: p<0.01, ***: p<0.001. The area under the curve (AUC) was analyzed for the different groups (B, D). ANOVA followed by Bonferroni’s post hoc test was conducted. Different letters indicate a value of at least p<0.05. Data are presented as mean±SEM (n=4-12).
Figure 6. (A) Effect of cabergoline on the pancreatic gene expression of Ins1, Ins2, Gcg and Ccnd2. The mRNA expression analysis of Ins1, Ins2 and Gcg from fasted 6-month-old WT, hCGβ+ and cabergoline-treated WT (WTcab) and hCGβ+ (hCGβ+ cab) pancreata was carried out by qRT-PCR. ANOVA, followed by Bonferroni’s post hoc test, was conducted. Different letters indicate a value of at least p< 0.05. Data are presented as mean ±SEM (n=4). (B) Immunolocalization of PDX1 and NKX 6.1 in pancreas. Representative sections from 6-month-old WT, hCGβ+ and hCGβ+ cab female mice were immunostained with PDX1 and NKX 6.1 specific antibodies. Scale bar 100 µm.