Endocrine Regulation of Calcium and Phosphate Metabolism

Huiping Wang (王会平), PhD
Department of Physiology
Rm C541, Block C, Research Building, School of Medicine
Tel: 88208292
Email: wanghuiping@zju.edu.cn
Outline

• Hormonal Regulation of $[\text{Ca}^{2+}]$
 – Action of PTH
 – Action of vitamin D(1,25- (OH)$_2$-D$_3$)
 – Action of calcitonin
Importance of Maintaining Extracellular $[\text{Ca}^{2+}]$

- Muscle contraction & relaxation
- Nerve conduction
- Blood clotting
- Bone and teeth formation
- Secretory activity of endocrine & exocrine cells
- Second messenger
Endocrine Regulation of Calcium and Phosphate Metabolism

• Hormonal control:
 – PTH, vitamin D(1,25-(OH)₂-D₃), calcitonin

• Major regulatory organs:
 – intestine, bone, kidneys
Vitamin D

- **Sources of vitamin D:**
 - produced in the skin by UV(290-315 nm) radiation
 - ingested in the diet (D$_3$ rich in fish, liver, milk)

Vitamin D is not a “classic hormone” because it is not produced by an endocrine gland. However, its metabolite acts as a hormone by the mechanism similar to that of thyroid and steroid hormones.
Actions of 1,25-(OH)$_2$-D$_3$

- **plasma [Ca]**

- **Intestine**
 - increases Ca absorption
 - stimulates phosphate absorption

- **Bone**
 - stimulates Ca and Pi resorption
 - provides Ca and Pi from old bone to mineralize new bone

- **kidney**
 - enhances Ca and Pi reabsorption of renal tubule
Rickets

- Caused by deficiency of vitamin D activity (dietary deficiency, insufficient sun exposure, liver/kidney diseases)

- Deficiency of vitamin D causes inadequate mineralization of new bone matrix (lowered ratio of mineral/organic matrix)

- Symptoms: decreased mechanical strength and distortion especially in the long bones of legs.
Parathyroid Glands

- 4 glands located behind the thyroid
- Each gland weighs 30-50 mg
- Main cell type:
 - Chief cells
 - Parathyroid Hormone
Parathyroid Hormone (PTH)

- Polypeptide
- PTH is synthesized as prepro-PTH
- [PTH]=10~50ng/L
- Half life: 20~30 min
- Receptor: PTH/PTHrpR
PTH Actions

- **Major target organs**
 - **bone**
 - Bone resorption by stimulating osteoclasts and inhibiting osteoblasts
 - **kidney**
 - Reabsorption of Ca\(^{++}\) and excretion of phosphate
 - **intestinal tract (indirect effect)**
 - Absorption of calcium from the small intestine

- **Overall effect**
 - Increase plasma [Ca\(^{2+}\)]
 - Decrease plasma [P\(_i\)]
Factors Affecting PTH Secretion

- **Ca** and PTH form a negative feedback pair
- **1,25-(OH)2-D** and PTH form a negative feedback loop

![Graph showing Parathyroid hormone release vs. Extracellular Ca++](image)
Hypocalcemia

damage to blood supply during thyroidectomy → a characteristic spasm of the muscles of the upper extremity (Trousseau's sign). Tetany, convulsion muscle cramps

Plasma \([\text{Ca}^{2+}]\) falls below normal

↑ neuronal membrane Na permeability

Initiation of action potentials

↑ Excitability of nerve fiber

Tetanic muscle contraction

brain

seizures
Calcitonin

- Parafollicular or C cells
- Peptide
- Action
 - \(\downarrow \) Plasma \([\text{Ca}^{2+}]\)
 - Bone
 - by inhibiting synthesis and activity of osteoclasts (for bone resorption) & stimulating calcium uptake by bones
 - Kidney
 - It plays no role in normal day-to-day regulation of plasma calcium in humans
- Regulation: \([\text{Ca}^{2+}]\)
<table>
<thead>
<tr>
<th></th>
<th>PTH</th>
<th>Vitamin D</th>
<th>Calcitonin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stimulus for secretion</td>
<td>↓ serum [Ca^{2+}]</td>
<td>↓ serum [Ca^{2+}]</td>
<td>↑ serum [Ca^{2+}]</td>
</tr>
<tr>
<td></td>
<td>↑ PTH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>↓ serum [phosphate]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Action on:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>↑ resorption</td>
<td>↑ resorption</td>
<td>↓ resorption</td>
</tr>
<tr>
<td>Kidney</td>
<td>↓ P reabsorption (↑ urinary cAMP)</td>
<td>↑ P reabsorption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>↑ Ca^{2+} reabsorption</td>
<td>↑ Ca^{2+} reabsorption</td>
<td></td>
</tr>
<tr>
<td>Intestine</td>
<td>↑ Ca^{2+} absorption (via activation of vitamin D)</td>
<td>↑ Ca^{2+} absorption (Calbindin D-28K)</td>
<td>↑ P absorption</td>
</tr>
<tr>
<td>Overall effect on:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum [Ca^{2+}]</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
<tr>
<td>Serum [phosphate]</td>
<td>↓</td>
<td>↑</td>
<td></td>
</tr>
</tbody>
</table>
Osteoporosis

Change of Bone Mass

Fracture (vertebral, hip, wrist ...) occurs
loss of height & severely rounded upper back
Osteoporosis

- **Risk factors**
 - declining estrogen levels with aging *(major factor!)*
 - endocrine diseases: hyperthyroidism, hyperparathyroidism, Cushing disease
 - others: inadequate Ca intake, alcoholism, cigarette smoking, sedentary lifestyle

- **Prevention begins in the premenopausal years**
 - Ca intake
 - consistent program of weight-bearing exercises

- **Treatment**
 - Estrogen
 - Calcitonin
 - Vitamin D + Ca
Consistent Exercise!

Not just another new year’s resolution!
A patient with parathyroid deficiency 10 days after inadvertent damage to the parathyroid glands during thyroid surgery would probably have

A. low plasma phosphate and Ca\(^{2+}\) levels and tetany
B. low plasma phosphate and Ca\(^{2+}\) levels and tetanus
C. a low plasma Ca\(^{2+}\) level, increased muscular excitability, and a characteristic spasm of the muscles of the upper extremity (Trousseau’s sign)
D. high plasma phosphate and Ca\(^{2+}\) levels and bone demineralization
E. increased muscular excitability, a high plasma Ca\(^{2+}\) level, and bone demineralization
A patient with parathyroid deficiency 10 days after inadvertent damage to the parathyroid glands during thyroid surgery would probably have

A. low plasma phosphate and Ca\(^{2+}\) levels and tetany
B. low plasma phosphate and Ca\(^{2+}\) levels and tetanus
C. a low plasma Ca\(^{2+}\) level, increased muscular excitability, and a characteristic spasm of the muscles of the upper extremity (Trousseau’s sign)
D. high plasma phosphate and Ca\(^{2+}\) levels and bone demineralization
E. increased muscular excitability, a high plasma Ca\(^{2+}\) level, and bone demineralization
Which of the following is not involved in regulating plasma Ca$^{2+}$ levels?

A. Kidneys
B. Skin
C. Liver
D. Lungs
E. Intestine
Which of the following is not involved in regulating plasma Ca\(^{2+}\) levels?

A. Kidneys
B. Skin
C. Liver
D. Lungs
E. Intestine
The End.